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Orbit Determination for a Lunar Satellite'

Jack
Abstract 6?74

The orbit determination problem for a lunar satellite is
examined from the point of view of geometric determinacy of
the data. Various data-type combinations are considered,
including radar range, radar range-rate, and optical. Using
appropriate coordinate systems, it is shown how the condi-
tion equations may be set up and how the number of data
points required for solution may be calculated. Finally, it is
shown how these considerations are related to the statistical
problem of determining the orbit from noisy data.

Introduction

The problem of determining an orbit for a lunar
satellite differs from that for an Earth satellite or a
space probe primarily in the geometry involved. Be-
cause relative positions of observing stations and satel-
lite are limited, conditions arise in which the orbit
may be difficult to establish—difficult in the sense
that it is mathematically not well determined. The
questions then arise as to how much of the orbit can
be determined by the available data, and as to what
additional data must be obtained to complete the
orbit.

This analysis studies these questions systematically,
but without numerical computation.

Formulation of the Problem

As in any other type of orbit determination, the
problem for the lunar satellite is solved by an iterative
procedure based on differential corrections to an as-
sumed orbit. The orbit is defined by six associated
parameters, perhaps the set of osculating elements q, e,
1, Q, w, x or perhaps the position and velocity o, w0,
20, Zo, Yo, 2o at time ¢ = 0. One searches for that orbit
which best fits the observations, where “best fit”’ usually
means, in the sense of least squares, that the sum of the
squares of the residuals is a minimum.

In general, there will be many more observations than
the minimum required for geometrical determination
of the six orbital parameters. However, sometimes
because of geometric factors, certain of the orbital
parameters cannot be found with the available data.
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This results in the degeneracy of certain matrices used
in numerical orbit determination and causes the pro-
cedure to break down.

The purpose here is to examine geometric situations
which involve this type of degeneracy. To this end it is
convenient to evaluate orbit determination from the
point of view of the minimum number of observations
of a given type or types required to establish an orbit.

From the equations for the parameters, it will then be
& J«( Sé( clear as to which are determinate and which are not.

Only the simplest geometric considerations are in-
cluded. Effects of parallax of stations or of orbit, of
non-Keplerian orbit, ete., are neglected. Further, the
problem of determining nonorbital parameters is not
considered.

Equations

The problem is first set up in full geometric generality,
in terms of appropriate coordinate systems. The X, Y,
Z coordinate system, shown in Figs. 1 and 2, is non-
rotating and has its origin fixed at the center of mass
of the Moon. The £, n, ¢ coordinates are tied to the
plane of the satellite orbit, with ¢ in the direction of

Nnorinantar . o+
narmeenitrs, 9 av

right angies to £ lu ihe direction of
motion, and { perpendicular to £ % forming a right-
handed system. A third set of coordinates, x, ¥, z, is
tied to the observer-Moon line of sight, so that z is
measured along the observer-Moon line, the z, ¥ plane
is perpendicular to z, and the origin of coordinates is
again at the center of mass of the Moon.

If the probe’s coordinates in the §, 7, ¢ system are
£, 9, 0, then the coordinates in the other two systems

are given by

X £
Y]|=Bly (1)
Z )
z X
y|=AlY (2)
2 \Z

in which A and B are the appropriate rotation matrices
involving the Euler angles identified in Figs. 1 and 2
Specificially,

L L L
B=[m m ms (3)
n No ng
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A= ml ’mz ’fr—Lg (4)

with

I, = cos Q cos w — sin Q sin w cos 7}
m; = sin @ cos w + cos Q sin w cos 7 (5)
n, = sin w sin 7

l, = —cos Qsin w — sin Q cos w ¢os ﬂ

me = —sin @ sin w + cos Q cos w cos 2J3 (6)
Ny = €OS w sin 7

l; = sin Q sin 7 \!

my; = —cos 2 sin zk (7)
Ny = COS 1 J

and corresponding formulas for the components of A
using barred letters.

Derivatives are obtained by the usual multiplication
rule, giving

AN £ (¢ 3
y]=ABl{n |+ AB|y |+ AB| 1 (8)
] 0 0 0

Equations (1), (2), and (8) exhibit the observables,
x, 1, 2, L, 9, 2 in terms of the orbit elements. Presumably,
if enough values of the observables are obtained (cor-
responding to observations at different times) then
the orbit parameters can be computed.

To complete the representation, the following for-

mulas are also needed:
t=alcos E —e) 7 =av/1 — &sin F

a1 — éncos B (9)
1 —ecos

: an sin £ .
=0 =
1 —ecos K

nt+x=~FK—esink (10)
in which

F = eccentric anomaly

a = semi-major axis

e = eccentricity

n = mean angular rate

{ = time.

The equations above, though appropriate for machine
computation, are much too complicated for direct analy-
sis. In the following paragraphs, the equations are
simplified, with the hope of extracting some qualita-
tive information. In particular, it is assumed that all
observations are made from the same location, that
the observer is very far from the orbit, and that the
orbital parameters are constant over the period of
observation.

In any particular situation, there will be available
a number of obscrvations of the satellite, yielding
values of observables «;, 8., ete., at times {; . I'or the
present discussion the observables will in general be
the coordinates x, y, z and the velocities &, ¢, Z or some
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TABLE 1
Minimum Number of Observations for Determining
Orbit
‘ ‘ No. of
Type of Data Observables Observations
‘ | Required
. T T
Optical or angle radar x, Yy 3
Range radar |z ' 6 (5)
Doppler radar | z 6 (5)
_ Angle radar plus doppler x, Yy, z ! 2
2, 2 “ 3

Range radar plus doppler ‘

subset of these. Fach observable gives rise to two equa-
tions, the first obtained from Eq. (2) or (8), the second
from Eq. (10). It then becomes necessary to determine
also the eccentric anomaly, I, at each time point.

Thus, for the orbit determination problem with &
values of observables, at 7 different times, there will be
a system of & + 7 equations to solve. If the number of
unknown parameters, p, is greater than & + 7, the
system is indeterminate; if p is less than k 4+ 7 it is
over-determined and should be solved by statistical
procedures; if p is equal to & 4 7, it is Just determinate
(in all cases assuming no degeneracy ).

General Comments on Determinacy

How many observations are required to determine
an orbit? In the present context, the orbit is presumed
to be the osculating orbit, and the orbital elements are
presumed to be constant, or at least changing so slowly
that for the period of observation, the changes may be
neglected. The first step in answering the question,
then, is to refer to Eq. (1), (2), and (8).

The term, observation, is taken to mean the set (or
subset) of the quantities x, y, 2, £, ¥, Z determined at
any given instant of time, {. The particular subset
associated with an observation depends, of course, on
the type of equipment used for the observation. With
optical equipment or with angle radar, it may be as-
sumed that the subset consists of x and y. With doppler
radar, the subset consists of the single variable, 2, ob-
tained as R — R, where R is the range to the ob-
server and R, the range from the Moon’s center
to the observer. Similarly, range radar yields z = R
_— Ro .

To find the number of observations required, it is
sufficient, therefore, to note the number of parameters
determined by each observation. I'or optical data, the
limitation of two parameters per observation necessi-
tates three observations to establish six orbital ele-
ments. For doppler radar data, the requirement would
be for six observations to establish all six orbital param-
eters. However, in some situations only five of the
six are determinate. A combination of doppler and
angle radar yielding r, y and 2 requires two observa-
tions. These requirements, summarized in Table 1, are
the minimum for determinacy in each case and imply no
redundancy and no degeneracy.




Doppler Data Alone

The minimum of six observations required to de-
termine an orbit using doppler data alone (if the orbit
were determinate from such data) must be spaced far
enough apart in time to enstre uncorrelated data and
far enough apart in position to ensure significant meas-
urements.

When the observations are correlated or when the
spatial separation is not adequate, it may take more
than six observations to determine a complete orbit,
or in some cases only a partial orbit will be determinate.
Note, however, that the doppler data curve will im-
mediately yield the period and, hence the semi-major
axis of the orbit (see Eqs. (13) and (14)).

Futhermore, it may sometimes be desirable to use the
data to deternmiine not only the orbit but also certain
quantities that influence the orbit determination. These
include, for example, coordinates of the observation
stations, instrument biases, gravity field constants, and
lunar orbit constants. Of course, for this purpose more
data points and better precision are required than for
basie orbit determination.

To study the case of doppler data alone, it is con-
venient to consider in order each of three cases of
increasing complexity. In each case it is assumed that
there is only one observing station, located far from the
observed orbit.

Case 1: Stationary Moon

In this case, there is no loss in generality in choosing
the X, Y, Z coordinate axes to be coincident with the
x, ¥, z axes. Thus, 7 = & = Q = 0. Equation (8) then
reduces (for the z-component) to

. ansint
Tl —cewsE (11)

-(—sin w sin £ + cos w cos EA/1 — ¢2)
while Eq. (10) remains nt + x = E — esin E.

z

SATELLITE

\ Vs
\ / ORBIT

; ~~.APSE LINE

-~

Fic. 1

INERTIAL
REFERENCE

EARTH-MOON LINE \ PLANE\

Fic. 2

Here 2 is considered to be the observable (the Moon
is so distant that the parallax of the orbit is assumed
negligible). The first fact to be noticed in these equa-
tions is that the node, , does not appear, and there-
fore cannot be determined. However, from a superficial
look at least, it appears that the remaining five ele-
ments a, e, sin 7, sin w, and x are uncoupled and can
be determined provided only that five uncorrelated
measurements at five different times are available.
Note that the mean motion, n, is a function of the
semi-major axis, a, and that n appears alone in Eq. (10).
This fact should decouple the quantities a and sin <.

To summarize, then, it appears that for the stationary
Moon, five doppler observatinne are cuffiniont o dc
termine an orbit, except for the node, ?, which is not
determinate with any number of doppler observations.

The literature contains several methods of orbit de-
termination using doppler data alone. It may be of
interest here to show the relation between the present
discussion and one of these methods.

Since doppler data is usually obtained almost con-
tinuously, it is of interest to consider the possibility
of being able to identify the maxima and minima of
2. To use this type of data, it is convenient to rewrite Eq.
(11) in terms of the true anomaly, v, as

_ nasinz

V1-—¢

Then, proceeding as in Smart (Ref. 1, p. 359), it is

possible to determine e, w, and na sin 7 without resort-

ing to the time equation. If in addition, the gravity

constant of the Moon, u, is known, then by measuring
the period, P, and using the relations

[eos (v + @) + ecos w] (12)

27
n = ¥ (13)
and
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a = “1/3,”—2/3 (14)

it is possible to evaluate a and sin ¢ separately. Thus,
by using special points on the Z vs. t curve, it is possible
to simplify the computation and obtain some of the
orbit elements without working through the time equa-
tion and computing eccentric anomaly. On the other
hand, not all the information contained in the data is
being extracted, for as was first pointed out, all the
elements except @ are determinate, even though the
mass of the Moon is unknown.

Case 2: Moon Moving Radially and at Constant Speed
with Respect to Observer

Let r be the observer’s distance to the satellite, and
R his distance to the center of mass of the Moon. Then
the analogue to Eq. (11) is

na sin K
1 —c¢cosE (15)

-(—sin o sin E + cos w cos EA/1 — ¢*)

F=R+

in which R is a constant. If R is assumed known, the
problem reduces to Case 1. If R is assumed unknown,
then one additional observation is required to determine
R.

In contrast to this procedure, the method in Smart
(Ref. 1, Fig. 133) uses a graphical computation to
find the value of R.

Case 3: Moon Moving with Angular Velocity 8

Choose the z, y, z axes initially coincident with the
X, Y, Z axes, and such that the Y-axis points in the
direction of motion, the Z-axis in the observer-Moon
direction, and the X-axis normal to the plane of motion.
Then

a=0=0 (16)
and
1= 6t (17)
The 2 equation from Eq. (8) is

an

=
1 —ecos F

[—(my sin 6t 4 ny cos 6t) sin

+ (ma sin 8 + ny cos 6)v/1 — ¢ cos E]  (1g)
+ abl(m; cos §t — n, sin 6f) (cos E — e)
4+ (my cos 6t — ny sin 6t)4/1 — ¢ sin K|,

Here m; and n, are functions of w, @, and 7 (cf. Eqgs.
6 and 7). It is reasonable to expeet that all six orbit
elements may be determined by the system of Egs.
(18) and (10) provided only that at least six data
points are available. However, there remains an un-
certainty in the direction of the satellite motion, which
is seen as follows:

Assume, for example, that the solution of Egs. (10)
and (18) yields a set of values my, ms, n, and n. . It
is easily seen that, though these values determine w, Q,
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and ¢ almost completely, they do allow an ambiguity,
which amounts to an uncertainty in the direction of
motion. Thus, from Eqgs. (6) and (7)

sin Q cos w + cos  sin w cos 7 =
—sin 2 sin w + cos 2 ¢os w coS L = My

sin wsin 7 = m (

coswsint = ngJ

l
33
il

can be solved to yield
sini = v/n? 4+ no? (20)
n )

Sil’l w = —————
Vnd +
1 2 (21)
oS w = —, Fnz—_
V' + ne? J
snQ = MmN + Mmaeny
Vol + nt
(22)
cos O = MmNy — NeNe
V2 + ne?cos e
in which
017 Z£180°
0 £ w < 360° (23)
0 < Q < 360°.

Fquation (20) fails to define the difference between
first and second quadrant <. This reflects in the cor-
responding ambiguity in @ in Eq. (22).

As a practical matter in orbit determination, the
uncertainty in direction should cause no difficulty, since
the differential correction procedure presumes the direc-
tion of motion known a priori.

In summary, then, using six doppler observations on
the orbit of a satellite of a moving Moon, i1t should be
possible to completely define the orbit, including all
six orbital elements. However, there is an uncertainty
in the direction of motion that can be resolved only by
a prior: information, normally available in the dif-
ferential correction procedure.

Optical Data

Using optical equipment, the primary measurements
are angles. By projecting on the x, y plane (l'ig. 2)
these angles may be interpreted as distances measured
in this plane. FFor the satellite of a distant body, the
error introduced by assuming this to be a parallel
projection is small, and may be neglected for the present
diseussion. The difficulty of observing a lunar satellite
should, of course, be borne in mind.

Equations (1) and (2) express xr and y as functions
of the orbital elements of the satellite. Nine equations
are obtained from three observations, three each for
x, 4, and ¢, where the t equations are of the form of
Eq. (10). There are nine unknown quantities in these
equations, the six orbital elements a, e, 7, w, @, and x,
plus the three values of the eccentric anomaly, E.




Case 1: Stationary Moon

Choose coordinate axes as in Case 1 of the preceding
section, so that the equations for z and y from Eq. (2)
become

z = afli(cos E — ¢) + 1A/1 — ¢ sin E]

, P (24)
y = alm(cos E — e) + ma/1 — € sin El
and the ¢ equation is
nt=-—x+E—esinE (25)

In general, Egs. (24) and (25) can be expected to yield
a complete determination of the orbit, except for an
ambiguity in the direction of motion. For, assuming
L, l;, mi, and my known, then o, 2, and 7 are to be
determined from the system,

cos Qcosw — sinQsinweoss =
sin © cos w -+ cos  sinw cos 2 = my
—cos Qsinw — sin @ eos w cos t = [»

—sin Q sin w + cos € cos w cos 7 = m2J

from which it is possible to solve for sin Q@ and cos Q to
obtain

l; co8 w + I sin w ]

sin @ = -
—cos 7

= —my sin w + M cos w
cosQ =1lcosw — lpsin w

_mysin w ++ M €08 @
+cos 1

and trom which © and w can be eliminated. Thus, cos 7
is found by solving the quadratie equation

(lymy — Lyms) cos’ 4 + (I + I — ms" — myi’) cos @
(28)
it (127711 - l1mf2) =0

Using the value of cos 7 so obtained, Eq. (27) then
yields values for tan w, sin @ and cos w. But this leaves
the quadrants of Q@ and w uncertain, i.e., the direction
of motion is not determined. Thus, for angle data (two
angles per observation) with a stationary Moon, the
satellite orbit is completely determined by three ob-
servations except for the direction of motion. Again,
the use of differential corrections yields the additional
data necessary to determine the direction of motion.

Case 2: Moon Moving at Constant Angular Velocity 6

Using the coordinates of Case 3 of the preceding sec-
tion, the equations for the displacements x and y may
be written

r=X ‘
. Lo (29)
Y cos 6t — Z sin 6t

@
[

where
X = alli(cos E — ¢) + bA/1 — e&sin E] )
Y = a[mi(cos E — e) + man/1 — & sin EJ } (30)
Z = alm(cos E — €) + n\/1 — & sin E] |

and

nt=—x+E—esnk (31)

The change from Case 1 above is that here the additional
quantities n; and n, are determined. Thus, the exact
quadrants of the angles w and © can be found, and the
problem becomes completely determinate.

Range Data Plus Range-Rate Data

The appropriate equations in this case are taken from
the z component of Eq. (2) and the Z component of
Eq. (8). For the simplest case, the stationary Moon,
the equations reduce to

=asint
-[sin w cos E + cos w sin E v/1—e* — e sin |
an sin 4 (32)

2

T 1—-ccosE
| — sin w sin E + cos w cos E v/1—¢?]

The significant feature of these z and 2 equations is that
the node angle, Q, does not appear; thus, the node cannot
be determined from range and range-rate data for the
case of a stationary Moon.

Since three sets of observations yield nine equations
[six from three sets of Eq. (32) and three time equa-
tions| for the determination of only eight parameters,
it is apparent, that the arhit eveent for O ic sufficiently
well determined. Even the quadrant of « should be
obtainable since each of sin w and cos w can be solved
for separately.

Both range and range-rate data yield the same type
of information as shown in Eq. (32). However, range
data has the advantage of yielding, in addition, the
absolute distance to the orbit. Thus, the first of Eq.
(32) can be written [see Eq. (15)]

r = R 4+ asinsin w cos E
. - . (33)
+ cos wsin EA/1 — ¢ — e sin )
in which R is the distance to the center of mass of the
Moon. Considering R as an additional unknown in the
equations, one can then evaluate it as part of the orbit
determination procedure.

General Consideration

In the previous sections equations for orbit determin-
ation were exhibited in a form meant to show the alge-
braie or geometric determinacy as simply as possible. No
doubt there are many other formulations and other geo-
metric points of view which also reveal the nature of
the problem; however, the equations that have been pre-
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TABLLE 2
Stationary Moon

Type of Data O;)Ele;:' OL\ttI);)ér\?;- ng‘;ti?)fns Vartables Determined E.quations Determinacy
10ns
Optical or z, Y 3 9+ 1=10a,e¢ x, li, L2, mi, ms, Jx = a[l; (cos E — €) 4+ l:A/1 — e sin E]| Yes
angle radar E\, E, E; W = alm (cos E — ¢) + ma/1 — ¢ sin E|
Range z 5 10 a, e, x, n1, na, E, z = a[n; (cos E — e) + nav/1 — e sin E] Yes (no @)
E‘Z, Ea, E4y E-’)
Doppler 2 5 10 a, e, x, Ny, ne, By, =" (—p sin E + nev/1 — e2cos E) | Yes (no @)
1—ecosF
E, E;, E,, E;
Angles plus z, Y, 2 2 8 4+ 3 =11 a, ¢, x, L1, Iz, m1, mo, [z = a[l; (cos E — e) + I,n/1 — e? sin E] No
range ny, ne, K1, E, iy = alm; (cos E — ¢) + mar/1 — &2 sin E]
z = a[ni (cos E — e) + na/1T — e sin E]
Angles plus x, Y, 2 2 8 +3 =11 a,e, x, Ui, Iz, mi, ms,| [2 = a[ly (cos E — €) + 1:2/T — ¢ sin E| No
doppler ny, na, By, B 11/ = alm, (cos E — ¢) + ma\/1 — e?sin E]
2 = an(—mn sin E + na\/1 — e?cos E)/
(1 — ecos E)
Range plus z, 2 3 9 a, e, x, 1, N2, K, {z = aln, (cos E — ¢) + nav/1 — ¢? sin E| Yes (no Q)
doppler E. E; 2 = an(—mny sin E + na/1 — 2 cos E)/
(1 — ecos E)
Time equation: nt=—x+ E —esin E
Auxiliary equations: [;2 4+ m2 4+ n2 = 1
02+ ma? 4 ma?2 = 1
Lls + mms + nins = 0
(hims — Lam)2 4+ 1 = 1.2 + L2 4 m? + m?
(many + mons)? = (1 — n? — n®) [ 4+ ne? — (mme — mon)?)

TABLE 3
Moon in Motion
‘Observ—‘ No. of No. of . . - . } Deter-
Type of Data ables Obtsigx;)vsa— Equations ‘ Variables Determined Equations ‘} minacy
o } : B
Optical x, y 3 9+ 3 =12 12 | fx = all, (cos E — ¢) + [:\/T — &2 sin E] No
1 a, e, x, L1, L, m1, ms, iy = a[(my cos 6t — n; sin 61) (cos E — e)
| ny, ny, By Es, E, + (ms cos 6t — ns sin 64)/1 — ¢? sin E]
Range z 6 12+41= 13‘ 13 z = af(m sin 6t + n, cos 6t) (cos E — e) Yes
a, e, x, M1, M2, N1, N, + (m. sin 6t + no cos 6)\/1 — &2 sin E)
E\, E,, E;, E,, E;, Es
. i . an L S Yes
Range-rate 2 6 12+41=13 13 2= ——— [—(m sin 8f + n, cos 6t) sin K
1 —e¢cos K
a, e, x, M1, Mz, N, Nz, -+ (m2 sin 6t + n» cos 6)\/1 — 2 cos E]
E\, E, E;, E,, E;, E + ab[(m; cos 6t — n; sin 6t) (cos E — e)
+ (m2 cos 6t — ns sin 60)\/1 — e sin E]

sented are direct and do not involve complicated manip-
ulations such as do the methods presented in Smart
(Ref. 1).

In conclusion, it is appropriate to indicate how these
equations can be implemented to form a tool for estimat-
ing quantitatively how well an orbit can be determined.
John D. Reichert (Ref. 2) has done just this in a
short study in which he computed the correlation
matrix and standard deviations over a wide range of
conditions for a lunar satellite.

In Reichert’s formulation, d; is considered to be any
data type. Then

Ad; = Z ad;

da;
60[,' «

(34)
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where the «;, are the orbital parameters, and the partial
derivatives may be obtained from Egs. (1), (2), (8),
and (10). If the matrix of coefficients be denoted by A:

_ ad: ]

A= H aaiH

(35)

then the character of the matrix A describes the de-
terminacy of the «; . In particular, if A is a square,
nonsingular matrix, it will be possible to solve for the
da;. In general, however, there will be many more
data points than orbital parameters so that it will
be necessary to adopt a statistical approach. In brief,
the correlation matrix, A, for the error estimates in
the orbital parameters is given by




A = (ATA)TATAA(ATA)T (36)
while the parameters themselves are given by
— ; —
Aa = (ATA)Y AT Ad (37)
in which A7 means A transpose, A~' means A inverse,
i

A, is the covariance matrix of the observations, A d
—

is the set of obsz>rvations and A « the set of orbital
parameters.

Reichert’s study covers the case of a lunar satellite
tracked by doppler radar over a time interval ranging
from one orbit to one month. This corresponds to the
case of Moon in motion in the present discussion.

The results of Reichert’s analysis are exhibited in
terms of numerical values of elements of the A matrix,
or equivalently in terms of standard deviation and
correlation coefficients for the orbital elements. Accord-
ing to these results it appears that there will be no
problem in determining a lunar orbit from doppler
data alone, and with reasonable accuracy provided,
the doppler data itself is as good as it appears.

Summary

The results of this study are summarized in Table 2
for the stationary Moon and in Table 3 for the Moon
in motion. Data combinations not listed may be easily

analyzed by referring to their associated equations as
listed in the table.

In the first eolumn are listed the data types, with
the corresponding observables listed in the second col-
umn. The third column shows the minimum number
of observations required for an orbit determination, as-
suming optimum conditions. In the fourth column, the
first integer identifies the number of equations arising
directly from the observations, including the time equa-
tions. The second digit specifies the number of auxiliary
equations associated with the relations among the direc-
tion cosines I, la, my, ms, and ny, na.

The Variables-determined column identifies the un-
known variables appearing explicitly in the equations.
When the direction cosines are determined, the values
of w, Q, and ¢ may not be determinate. In a physical
sense, this usually means that the direction of motion
of the satellite is not determinate. The last column
indicates determinacy.
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